





#### **Enemies or Dance partners**

Technology and policy in the Energy Transition



#### Mark O'Malley

Chief Scientist Energy Systems Integration Group, Chair of Research Agenda Group, Global Power System Transformation Consortium, Professor of Electrical Engineering, UCD.

Netzforum, Lucerne, Switzerland, August 30<sup>th</sup> 2022

#### We all have our own perspective – this is mine

















### The Energy Transition

- Maintain supply demand balance, reliably and cost effectively at all locations and times.
- Much bigger than electricity
- Nothing individually new but everything in between is new
- Enormous challenge not only technically but politically
- Need to crack the chicken and egg problem and avoid putting the cart before the horse
- MISO and Switzerland are "central" to developments











#### The trend is dramatic and clear – towards 100 %



# Physical characteristics of variable renewable energy resources





- Inverter Based Resources (IBR) power electronics replacing synchronous machines
- Spatially disperse distributed
- Variable and somewhat difficult to predict - uncertainty





NARIS, National Renewable Energy Laboratory

Pinson, P., Madsen, H, Nielsen, H., Papaefthymiou, G. and Klöckl, B., From probabilistic forecasts to statistical scenarios of short-term wind power production, Wind Energy, volume 12, issue 1, January 2009

#### Different stakeholder and time frames













#### Governing equations

#### Maxwell

$$\begin{split} \oint \mathbf{E} \cdot d\mathbf{A} &= \frac{q_{enc}}{\varepsilon_0} \\ \oint \mathbf{B} \cdot d\mathbf{A} &= 0 \\ \oint \mathbf{E} \cdot d\mathbf{s} &= -\frac{d\Phi_{\rm B}}{dt} \\ \oint \mathbf{B} \cdot d\mathbf{s} &= \mu_0 \varepsilon_0 \frac{d\Phi_{\rm E}}{dt} + \mu_0 i_e \end{split}$$











#### Electricity is different but power systems are the same



#### Valuing dedicated storage in electricity grids



EASAC policy report 33

May 2017

ISBN: 978-3-8047-3729-7

This report can be found at www.easac.eu

Science Advice for the Benefit of Europe



### SPOT PRICING OF ELECTRICITY

Fred C. Schweppe Michael C. Caramanis Richard D. Tabors Roger E. Bohn



Kluwer Academic Publishers Boston/Dordrecht/London

### The Transition is a Journey but no new bicycle













- ACTUAL SYSTEM GENERATION - ACTUAL WIND GENERATION

### Global Power System Transformation (G-PST) Consortium



https://globalpst.org/

https://globalpst.org/wp-content/uploads/042921G-PST-Research-Agenda-Master-Document-FINAL updated.pdf

GLOBAL PST CONSORTIUM

#### Bring it all together Institutionally for Transformation of the Global Power System





#### G-PST and Policy





https://www.esig.energy/wpcontent/uploads/2021/08/ESIG-Redefining-Resource-Adequacy-2021.pdf



ENSURING NOT ONLY CLEAN ENERGY, BUT RELIABILITY

ENERGY SYSTEMS

#### The Intersection of Resource Adequacy and Public Policy



https://globalpst.org/wpcontent/uploads/ESIG-GPST-RA-policybrief-2021.pdf

#### Going towards 100 % in North East of North America





No trade

-Current Trans. Cap.

----Optimal Trans. Cap.

← Current Trans. Cap. + Inst. Integration

Optimal Trans. Cap. + Inst. Integration





Engineering is the art of approximation – you should know the answer before you do the analysis









Source: JRC 2012 & Juha Kiviluoma

#### Some laws we know others it is too early to tell

#### Energy Evolution – Laws of Thermodynamics

### Digital Revolution – Moores Law







Source: Ronan Doherty

#### Conclusions

- The energy transition requires discipline
- The laws of physics are not flexible
- Policies may need to adapt
- Good ideas may have a poor outcome
- Global dance partners are needed





#### Acknowledgements & further reading

- Nicole Walser, Maurice Dierick
- My students and colleagues



## https://globalpst.org/



### https://www.esig.energy/